Periode(T) = banyaknya waktu dalam satu getaran; Amplitude (A) = simpangan maksimum; Terdapat beberapa syarat dalam fenomena yang dikatakan sebagai gerak harmonik sederhana, yaitu: Berosilasi periodik; Terdapat gaya pemulih pada osilasi; Arah percepatan dan gaya yang bekerja mengarah ke titik kesetimbangan; Terdapat inersia yang menyebabkan
Dalamgerak pada getaran pegas berlaku hukum Hooke yang menyatakan hubungan hubungan antara gaya F yang meregangkan pegas dan pertambahan panjang pegas Dx pada daerah elastis pegas. Pada daerah elastis, F sebanding dengan Dx. Hal ini dinyatakan dalam bentuk persamaan : F = k .Dx . (i) Dengan, F = gaya yang dikerjakan benda pegas (N)
C Getaran Harmonik Sederhana Gerak getaran yang paling sederhana adalah getaran harmonik. Salah satu contoh getaran harmonik adalah gerak yang dialami oleh benda yang digantungkan pada pegas vertikal seperti dalam gambar 2 Gambar 2 Benda Pada Pegas Vertikal[9] Pada gambar 2 (a) pegas vertikal tak teregang, (b) pegas teregang sebesar y 0 =
Getaranharmonis memiliki beberapa ciri, diantaranya sebagai berikut: Gerakan yang terjadi pada getaran harmonis yaitu berupa gerakan bolak balik. Titik kesetimbangan yang berada ditengah lintasan pun pasti dilewati oleh gerakan tersebut. Adanya percepatan yang bekerja pada getaran harmonis
. Sobat Pijar, pernahkah kamu lihat gerakan bandul atau per? Kedua gerakan itu termasuk dalam gerak harmonik sederhana, lho. Jadi, gerakannya bolak-balik di sekitar titik keseimbangan. Kalau kamu perhatikan, bandul punya titik keseimbangan di tengah. Meski kecepatannya melambat, bandul tetap bergerak di sekitar titik keseimbangan harmonik sederhana ini merupakan salah satu materi penting dalam fisika, khususnya dalam mekanika. Gerak ini biasanya terjadi pada benda yang bergerak bolak-balik di sekitar titik banget, kan? Gerak harmonik sederhana ini ada di mana-mana dan sangat penting untuk dipelajari. Yuk, kita belajar bersama tentang gerak harmonik sederhana kelas 10 lebih lanjut!Pengertian Gerak Harmonik SederhanaPengertian Gerak Harmonik Sederhana yang tepat adalah gerakan periodik yang dilakukan oleh benda yang memiliki amplitudo jarak maksimum dari titik keseimbangan yang kecil dan bergerak bolak-balik di sekitar titik ini biasanya terjadi pada benda yang terhubung dengan pegas atau bandul. Gerak harmonik sederhana juga dapat dianalisis menggunakan rumus matematis, seperti persamaan gerak, energi kinetik, dan energi potensialFaktor yang Mempengaruhi Gerak Harmonik SederhanaUntuk bergerak secara harmonis, ada beberapa faktor yang mempengaruhinya. Faktor yang mempengaruhi getaran pada gerak harmonik sederhana adalah sebagai berikutMassa BendaMassa benda yang bergerak mempengaruhi periode getaran pada Gerak Harmonik Sederhana. Semakin besar massa benda, maka periode getaran akan semakin lama. Hal ini disebabkan karena gaya restoratif yang dihasilkan oleh pegas atau bandul semakin kecil, sehingga waktu yang dibutuhkan untuk melakukan satu kali gerakan bolak-balik semakin PegasKonstanta pegas juga mempengaruhi periode getaran pada Gerak Harmonik Sederhana. Semakin besar konstanta pegas, maka periode getaran juga akan semakin pendek. Hal ini karena gaya restoratif yang dihasilkan oleh pegas semakin besar, sehingga waktu yang dibutuhkan untuk melakukan satu kali gerakan bolak-balik semakin GerakanAmplitudo gerakan pada Gerak Harmonik Sederhana juga mempengaruhi periode gerakan. Semakin besar amplitudo, maka periode getaran juga semakin lama. Hal ini disebabkan karena semakin jauh benda bergerak dari titik keseimbangan, semakin besar gaya restoratif yang dihasilkan oleh pegas atau bandul, sehingga waktu yang dibutuhkan untuk melakukan satu kali gerakan bolak-balik semakin GesekTerakhir, gaya gesek juga mempengaruhi periode getaran pada Gerak Harmonik Sederhana. Semakin besar gaya gesek, maka periode getaran akan semakin lama karena energi kinetik yang dimiliki oleh benda akan berkurang. Hal ini disebabkan karena gaya gesek yang terjadi antara benda dengan medium yang mengurangi energi kinetik yang dimiliki oleh benda, sehingga waktu yang dibutuhkan untuk melakukan satu kali gerakan bolak-balik semakin Gerak Harmonis SederhanaSimpanganSimpangan getaran harmonik adalah jarak antara posisi benda pada saat tertentu dengan posisi kesetimbangan atau posisi awal. Pada Gerak Harmonik Sederhana, simpangan benda diukur dari titik keseimbangan atau posisi awal benda saat benda mulai bergerak dapat berupa besaran vektor atau skalar. Besaran vektor digunakan untuk menggambarkan arah dan magnitudo simpangan, sedangkan besaran skalar hanya menggambarkan magnitudo simpangan tanpa memperhatikan sangat penting dalam analisis Gerak Harmonik Sederhana karena simpangan benda berubah-ubah seiring dengan waktu. Dalam satu periode getaran, simpangan benda mengalami perubahan dari simpangan maksimum hingga simpangan minimum dan kembali lagi ke simpangan maksimum. Perlu Sobat Pijar ketahui, simpangan maksimum atau simpangan terbesar disebut merupakan besaran vektor yang menggambarkan perubahan posisi suatu benda per satuan waktu. Dalam Gerak Harmonik Sederhana, kecepatan menggambarkan seberapa cepat benda bergerak pada suatu titik waktu tertentu, di sekitar titik gerak harmonik dapat dihitung dengan cara menghitung turunan waktu dari fungsi simpangan benda. Pada Gerak Harmonik Sederhana, kecepatan benda pada titik waktu tertentu dapat dihitung dengan menggunakan turunan waktu dari persamaan simpangan benda, seperti yang dijelaskan sebelumnya. Rumus KeteranganPercepatanPercepatan merupakan besaran vektor yang menggambarkan perubahan kecepatan suatu benda per satuan waktu. Dalam Gerak Harmonik Sederhana, percepatan menggambarkan seberapa cepat kecepatan benda berubah pada suatu titik waktu tertentu, di sekitar titik dapat dihitung dengan cara menghitung turunan waktu dari besaran kecepatan benda. Pada Gerak Harmonik Sederhana, percepatan benda pada titik waktu tertentu dapat dihitung dengan menggunakan turunan waktu dari persamaan kecepatan benda. Berikut rumus percepatan gerak harmonik yang wajib Sobat Pijar ketahuiRumusKeteranganContoh Soal Gerak Harmonik SederhanaBerikut adalah contoh soal Gerak Harmonik Sederhana beserta penyelesaiannyaSebuah pegas memiliki konstanta pegas sebesar 500 N/m. Benda dengan massa 0,2 kg digantungkan pada pegas tersebut dan ditarik ke bawah sejauh 5 cm dari posisi kesetimbangan, kemudian dilepaskan. Tentukan frekuensi, periode, amplitudo, simpangan, dan percepatan maksimum getaran benda!PembahasanDiketahuiKonstanta pegas k = 500 N/mMassa benda m = 0,2 kgSimpangan awal y = 5 cm = 0,05 mFrekuensi f gerakan dapat dihitung menggunakan rumusPeriode T gerakan dapat dihitung menggunakan rumusAmplitudo A gerakan sama dengan simpangan maksimum pada gerakan tersebut, sehinggaSimpangan s pada titik waktu tertentu dapat dihitung menggunakan rumusPada t = 0, simpangan adalah 0 karena benda dilepaskan dari posisi kesetimbangan. Pada t = T/4, simpangan mencapai nilai maksimum positif, sehinggaPercepatan maksimum gerakan dapat dihitung menggunakan rumusJadi, frekuensi getaran adalah 7,97 Hz, periode getaran adalah 0,1255 s, amplitudo gerakan adalah 0,05 m, simpangan pada titik waktu tertentu adalah 0,003 m, dan percepatan maksimum gerakan adalah -125 m/s^2. ________________________________________Nah, itulah penjelasan tentang gerak harmonik sederhana beserta faktor-faktor yang mempengaruhinya. Dengan memahami konsep dasar gerak harmonik sederhana dan melihat contoh soal yang diberikan, diharapkan kamu dan Sobat Pijar bisa lebih memahami cara menghitung simpangan, periode, frekuensi, dan kecepatan pada gerak harmonik sederhana. Selamat belajar dan semoga bermanfaat ya!Tertarik untuk belajar Fisika lebih lanjut? Kamu bisa menggunakan Pijar Belajar, lho! Selain ada video pembahasan materi, ada juga ratusan latihan soal yang bisa kamu manfaatkan untuk melatih kemampuan berhitung dan rumus Fisika-mu!Yuk, unduh Pijar Belajar sekarang juga!
Getaran Harmonis – Hay sahabat semua.!Pada perjumpaan kali ini kembali akan kami sampaikan mengenai Getaran Harmonis Pengertian, Rumus, Makalah, Modul Dan Contoh Soal. Namun pada perjumpaan sebelumnya kami juga telah menyampaikan materi tentang Hukum Hess. Nah untuk melengkapi apa yang menjadi tema pembahasan kita kali ini, maka simak ulasan selengkapnya di bawah ini. Definisi Getaran HarmonisSyarat-syarat Getaran HarmonisPeriode dan Frekuensi Getaran Harmonis1. Periode dan Frekuensi Sistem Pegas2. Periode dan Frekuensi Bandul SederhanaContoh Soal dan Pembahasan Getaran Harmonis Definisi Getaran Harmonis Getaran Harmonis Apa yang dimaksud dengan Getaran Harmonis ? yakni merupakan sebuah gerak pada sebuah benda di mana grafik letak partikel merupakan sebagai fungsi waktu yang berbentuk sinus yang bisa dinyatakan dalam bentuk sinus maupun kosinus. Kemudian pada gerak seperti ini dikenal juga dengan sebutan gerak osilasi atau getaran harmonis. Nah untuk gambaran atau contoh dari sistem yang menggunakan prinsip getaran harmoni sendiri misalnya seperti, dawai pada alat musik, gelombang radio, arus listrik AC dan denyut jantung. Kemudian Galileo juga telah diduga menggunakan denyut jantungnya untuk dijadikan sebagai pengukuran waktu dalam melakukan sebuah pengamatan gerak. Syarat-syarat Getaran Harmonis Di bawah ini terdapat beberapa syarat-syarat sebuah gerakan bisa dianggap sebagai getaran harmonis, yang diantaranya ialah sebagai berikut Sistem Gerakannya secara periodik atau Gerakannya akan selalu melewati kedudukan pada Percepatan atau gaya yang bekerja yang terdapat pada sebuah benda akan dapat sebanding dengan kedudukan atau simpangan Arah dalam percepatan atau gaya yang bekerja yang ada didalam suatu benda selalu mengarah kedudukan keseimbangan. Periode dan Frekuensi Getaran Harmonis 1. Periode dan Frekuensi Sistem Pegas Pada inti pokoknya, dimana gerak harmonis ialah merupakan sebuah gerak yang berlangsung secara melingkar yang beraturan yang berlangsung pada salah satu sumbu utama. Maka oleh sebab itu, periode dan frekuensi yang ada pada pegas bisa dihitung dengan cara menyertakan antara gaya pemulih F = – kX dengan gaya sentripetal F = -4π 2 mf2X. Jadi akan diperoleh, -4π² mf²X = -kX —> 4π² mf² = k Periode dan frekuensi yang berlangsung pada suatu sistem beban pegas yang mana hal ini hanya bergantung dengan massa dan juga konstanta gaya pegas. 2. Periode dan Frekuensi Bandul Sederhana Pada Suatu bandul yang sederhana tersusun atas sebuah beban yang mempunyai massa “m” yang kemudian diletakan dengan cara digantung pada bagian ujung tali yang ringan maka massanya dapat diabaikan dengan panjang l. Kemudian apabila pada beban tersebut ditarik ke salah satu sisi kemudian dilepaskan, maka beban tersebut akan berayun dengan melalui titik yang memberikannya keseimbangan dan akan menuju ke arah sisi yang lainnya. Kemudian jika amplitudo pada ayunan tersebut kecil, maka pada bandul tersebut akan melakukan sebuah getaran harmonis. Nah dalam hal ini diketahui bahwa suatu Periode beserta frekuensi pada suatu getaran bandul yang sederhana layaknya seperti yang terjadi pada pegas. Jadi intinya, periode dan frekuensinya juga bisa dihitung dengan cara menyetarakan gaya pemulih dan juga gaya sentripetal. Nah Persamaan dari gaya pemulih dalam bandul sederhana ialah F = -mg sinθ. untuk sudut θ kecil θ dalam satuan radian, jadi sin θ = θ. maka oleh sebab itu, persamaannya dapat ditulis menjadi F = -mg X/l. Sevbab persamaan pada gaya sentripetal ialah F = -4π 2 mf²X, Jika akan kita peroleh persamaan sebagai berikut. -4π² mf²X = -mg X/l4π² f² = g/lf = ½π √km atau T = 2π √mk Dalam hal ini yang mana Periode kemudian dengan frekuensi pada suatu bandul yang sangat sederhana tak pernah ketergantungan pada massa dan juga pada simpangan bandul, Melainkan sangat bergantung terhadap ukuran dari tali yang memanjang dan juga kecetan adanya sebuah gravitasi yang disekitar. Contoh Soal dan Pembahasan Getaran Harmonis Soal Pada Sebuah benda mengalangi suatu getaran hingga sampai menyebabkan suatu getaran harmonis dengan persamaan y = 0,04 sin 20π t, yang mana y menjadi sebagai simpangan dalam satuan meter dan kemudia t, akan menjadi sebagai waktu dalam satuan sekon. Maka hitunglah berapa julah besaran dari persamaan yang terjadi pada getaran harmonis berikut ini amplitudofrekuensiperiodesimpangan maksimumsimpangan ketika t = 1/60 sekonsimpangan ketika sudut fasenya 45°sudut fase ketika simpangannya 0,02 meter Pembahasan Berdasarkan pola dari persamaan pada simpangan gerak harmonis yang ada di atas ialah y=A sin t=2π f atau = 2π/T a A /amplitudo y=0,04 sin20π t↓A =0,04 meter b f atau frekuensi y = 0,04 sin 20π t↓ = 20π2πf = 20πf = 10 Hz c T atau periode T = 1/fT = 1/10 = 0,1 s d y. maks atau simpangan maksimum y =A sin ty =y. maks sin ty =0,04 sin 20π t↓y =y. maks sin t Merupakan simpangan maks seperti halnya amplitudo e simpangan pada saat t=1/60sekon y=0,04 sin20π ty=0,04 sin20π 1/60y=0,04 sin1/3 πy=0,04 sin60° y=0,04 ×1/2√3 y=0,02√3 m f simpangan ketika sudut fasenya 45° y =A sin ty =A sin θ di mana θ adalah sudutfase, θ = t y =0,04sin θy =0,04sin 45° y =0,040,5√2 y =0,02√2 m g sudut fase ketika simpangannya 0,02 meter y = sin 20π ty= sin θ0,02=0,04 sin θsin θ=1/2θ =30° Nah itulah yang bisa kami sampaikan mengenai getaran harmonis, semoga ulasan ini dapat bermanfaat bagi sahabat semua.
College Loan Consolidation Wednesday, December 17th, 2014 - Kelas XI Getaran harmonik atau getaran selaras memiliki ciri frekuensi getaran yang tetap. Pernahkan kita mengamati apa yang terjadi ketika senar gitar dipetik lalu dilepaskan? kita akan melihat suatu gerak bolak-balik melewati lintasan yang sama. Gerakan seperti ini dinamakan gerak periodik. Contoh lain gerak periodik adalah gerakan bumi mengelilingi matahari revolusi bumi, gerakan bulan mengelilingi bumi, gerakan benda yang tergantung pada sebuah pegas, dan gerakan sebuah bandul. Di antara gerak periodik ini ada gerakan yang dinamakan gerak Pengertian Getaran Harmonik Gerak harmonik merupakan gerak sebuah benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinus dapat dinyatakan dalam bentuk sinus atau kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Contoh lain sistem yang melakukan getaran harmonik, antara lain, dawai pada alat musik, gelombang radio, arus listrik AC, dan denyut jantung. Galileo di duga telah mempergunakan denyut jantungnya untuk pengukuran waktu dalam pengamatan gerak. Gerak benda pada lantai licin dan terikat pada pegas untuk posisi normal a, teregang b, dan tertekan c Untuk memahami getaran harmonik, kita dapat mengamati gerakan sebuah benda yang diletakkan pada lantai licin dan diikatkan pada sebuah pegas . Anggap mula-mula benda berada pada posisi X = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke kiri X = – pegas akan mendorong benda ke kanan, menuju posisi keseimbangan. Sebaliknya jika benda ditarik ke kanan, pegas akan menarik benda kembali ke arah posisi keseimbangan X = +. Gaya yang dilakukan pegas untuk mengembalikan benda pada posisi keseimbangan disebut gaya pemulih. Besarnya gaya pemulih menurut Robert Hooke dirumuskan sebagai berikut. Fp = -kX Tanda minus menunjukkan bahwa gaya pemulih selalu pada arah yang berlawanan dengan simpangannya. Jika kita gabungkan persamaan di atas dengan hukum II Newton, maka diperoleh persamaan berikut. Fp = -kX = ma atau Terlihat bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. Syarat Getaran Harmonik Syarat suatu gerak dikatakan getaran harmonik, antara lain Gerakannya periodik bolak-balik. Gerakannya selalu melewati posisi keseimbangan. Percepatan atau gaya yang bekerja pada benda sebanding dengan posisi/simpangan benda. Arah percepatan atau gaya yang bekerja pada benda selalu mengarah ke posisi keseimbangan. Periode dan Frekuensi Getaran Harmonik a. Periode dan Frekuensi Sistem Pegas kita telah mempelajari gerak melingkar beraturan di kelas X. Pada dasarnya, gerak harmonik merupakan gerak melingkar beraturan pada salah satu sumbu utama. Oleh karena itu, periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih F = -kX dan gaya sentripetal F = -4π 2 mf2X. -4π 2 mf2X = -kX 4π 2 mf2 = k Periode dan frekuensi sistem beban pegas hanya bergantung pada massa dan konstanta gaya pegas. b. Periode dan Frekuensi Bandul Sederhana Sebuah bandul sederhana terdiri atas sebuah beban bermassa m yang digantung di ujung tali ringan massanya dapat diabaikan yang panjangnya l. Jika beban ditarik ke satu sisi dan dilepaskan, maka beban berayun melalui titik keseimbangan menuju ke sisi yang lain. Jika amplitudo ayunan kecil, maka bandul melakukan getaran harmonik. Periode dan frekuensi getaran pada bandul sederhana sama seperti pada pegas. Artinya, periode dan frekuensinya dapat dihitung dengan menyamakan gaya pemulih dan gaya sentripetal. Gaya yang bekerja pada bandul sederhana Persamaan gaya pemulih pada bandul sederhana adalah F = -mg sinθ . Untuk sudut θ kecil θ dalam satuan radian, maka sin θ = θ . Oleh karena itu persamaannya dapat ditulis F = -mg . Karena persamaan gaya sentripetal adalah F = -4π 2 mf2X, maka kita peroleh persamaan sebagai berikut. -4π 2 mf2X = -mg 4π 2 f2 = Periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat. Persamaan Getaran Harmonik Persamaan getaran harmonik diperoleh dengan memproyeksikan gerak melingkar terhadap sumbu untuk titik yang bergerak beraturan. a. Simpangan Getaran Harmonik Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Gambar diabawah melukiskan sebuah partikel yang bergerak melingkar beraturan dengan kecepatan sudut dan jari-jari A. Anggap mula-mula partikel berada di titik P. Proyeksi gerak melingkar beraturan terhadap sumbu Y merupakan getaran harmonik sederhana. Perhatikan gambar diatas. Setelah selang waktu t partikel berada di titik Q dan sudut yang ditempuh adalah θ = t = . Proyeksi titik Q terhadap diameter lingkaran sumbu Y adalah titik Qy. Jika garis OQy kita sebut y yang merupakan simpangan gerak harmonik sederhana, maka kita peroleh persamaan sebagai berikut. Y = A sin θ = A sin t = A sin Besar sudut dalam fungsi sinus θ disebut sudut fase. Jika partikel mula-mula berada pada posisi sudut θ0, maka persamaanya dapat dituliskan sebagai berikut. Y = A sin θ = A sin t + θ0 = A sin +θ0 Sudut fase getaran harmoniknya adalah sebagai berikut. Karena Φ disebut fase, maka fase getaran harmonik adalah sebagai berikut. Apabila sebuah benda bergetar harmonik mulai dari t = t1 hingga t = t2, maka beda fase benda tersebut adalah sebagai berikut. Beda fase dalam getaran harmonik dinyatakan dengan nilai mulai dari nol sampai dengan satu. Bilangan bulat dalam beda fase dapat dihilangkan, misalnya beda fase 2¼ ditulis sebagai beda fase ¼. b. Kecepatan Getaran Harmonik Kecepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan simpangan. Mengingat nilai maksimum dari fungsi cosinus adalah satu, maka kecepatan maksimum vmaks gerak harmonik sederhana adalah sebagai berikut. vmaks = A c. Percepatan Getaran Harmonik Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. ay = A [- sin wt + θ 0] ay = - 2A sin t + θ 0 ay = - 2y Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya y = A, maka percepatan maksimumnya amaks gerak harmonik sederhana adalah sebagai berikut. amaks = – 2 A Energi Getaran Harmonik Benda yang bergerak harmonik memiliki energi potensial dan energi kinetik. Jumlah kedua energi ini disebut energi mekanik. a. Energi Kinetik Gerak Harmonik Cobalah kita tinjau lebih lanjut energi kinetik dan kecepatan gerak harmoniknya. Karena Ek =½ mvy2 dan vy = A cos t, maka Energi kinetik juga dapat ditulis dalam bentuk lain seperti berikut. Ek maks = m 2 A2, dicapai jika cos2 t = 1. Artinya, t harus bernilai , , …, dan seterusnya. y = A cos t y = A cos y = A di titik setimbang Ek min = 0, dicapai bila cos2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A cos t y = A cos 0 y = A di titik balik Jadi, energi kinetik maksimum pada gerak harmonik dicapai ketika berada di titik setimbang. Sedangkan energi kinetik minimum dicapai ketika berada di titik balik. b. Energi Potensial Gerak Harmonik Besar gaya yang bekerja pada getaran harmonik selalu berubah yaitu berbanding lurus dengan simpangannya F = ky. Secara matematis energi potensial yang dimiliki gerak harmonik dirumuskan sebagai berikut. Ep = ky2 Ep = m 2 A sin t2 Ep = m 2 A2 sin2 t Ep maks = m 2 A2 dicapai jika sin2 t = 1. Artinya t harus bernilai , 3, … , dan seterusnya y = A sin y = A di titik balik Ep min = 0, dicapai jika sin2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A sin t y = A sin 0 y = 0 di titik setimbang c. Energi Mekanik Gerak Harmonik Energi mekanik sebuah benda yang bergerak harmonik adalah jumlah energi kinetik dan energi potensialnya. Berdasarkan persamaan diatas, ternyata energi mekanik suatu benda yang bergetar harmonik tidak tergantung waktu dan tempat. Jadi, energi mekanik sebuah benda yang bergetar harmonik dimanapun besarnya sama. Em = Ek maks = Ep maks Em = m 2 A2 = k A2 Kedudukan gerak harmonik sederhana pada saat Ep dan Ek bernilai maksimum dan minimum. d. Kecepatan Benda yang Bergetar Harmonik Untuk menghitung kecepatan maksimum benda atau pegas yang bergetar harmonik dapat dilakukan dengan menyamakan persamaan kinetik dan energi total mekaniknya dimana Ek = Em. Sedangkan untuk menghitung kecepatan benda di titik sembarang dilakukan dengan menggunakan persamaan kekekalan energi mekanik
Mekanik Kelas 10 SMAGetaran HarmonisKarakteristik Getaran Harmonis Simpangan, Kecepatan, Percepatan, dan Gaya Pemulih, Hukum Kekekalan Energi Mekanik pada Ayunan Bandul dan Getaran PegasDalam getaran harmonik, percepatan getaran ....A selalu sebanding dengan simpangannya B tidak bergantung simpangan C berbanding terbalik dengan kuadrat frekuensinya D berbanding lurus dengan pangkat tiga amplitudonya E berbanding lurus dengan sudut fasenyaKarakteristik Getaran Harmonis Simpangan, Kecepatan, Percepatan, dan Gaya Pemulih, Hukum Kekekalan Energi Mekanik pada Ayunan Bandul dan Getaran PegasGetaran HarmonisGelombang MekanikFisikaRekomendasi video solusi lainnya0334Sebuah partikel bergerak harmonik dengan amplitudo 13 cm ...0050Persamaan antara getaran dan gelombang adalah .... 1 ke...0050Panjang sebuah bandul 40 cm . Bandul disimpangkan dengan...0253Sebuah benda yang diikat dengan seutas benang hanya dapat...Teks videoHalo coffee Friends kali ini kita akan membahas soal fisika di mana Soalnya adalah dalam getaran harmonik percepatan getaran a selalu sebanding dengan simpangannya tidak bergantung simpangan y berbanding terbalik dengan kuadrat frekuensinya D berbanding lurus dengan pangkat tiga amplitudonya y berbanding lurus dengan sudut fasenya untuk menjawab pertanyaan ini kita Uraikan satu persatu jawaban dari opsi dan kita lihat mana opsi yang benar dan mana yang salah kita lihat pernyataan yang ada di mana percepatan getaran selalu sebanding dengan simpangannya persamaan percepatan Getaran yang berhubungan dengan simpangan adalah A = negatif Omega kuadrat dikali X dimana adalah percepatan Omega adalah kecepatan sudut x adalah simpangan dari persamaan dapat dilihat nilai a dan X bernilaiArtinya pernyataan yang adalah benar kita lihat pernyataan yang B di mana percepatan getaran tidak bergantung pada simpangan pernyataan ini. Jelaskan biru karena dari persamaan yang tadi kita lihat bahwa percepatan memiliki hubungan yang sebanding dengan simpangan artinya a bergantung pada simpangan lalu pernyataan yang percepatan getaran berbanding terbalik dengan kuadrat frekuensinya kita lihat hubungannya dalam persamaan A = negatif Omega kuadrat dikali X atau A = negatif 2 x kuadrat dikali X dimana hal ini didapatkan dari menguraikan Omega = 2 PF adalah frekuensi kita lihat hubungan percepatan dan frekuensi disini adalah bernilai sebanding dengan kuadrat frekuensi bukan berbanding terbalik artinya pernyataan yang c adalah salahLanjutnya yaitu percepatan getaran berbanding lurus dengan pangkat 3 amplitudonya kita lihat persamaannya di mana A = negatif a. Omega kuadrat negatif hal ini didapatkan dari menguraikan simpangan dimana simpangan = a sin Omega t. Lihatlah nilai amplitudo dan nilai percepatan bernilai sebanding Namun bukan dalam pangkat 3 sehingga pernyataan yang d adalah salah pernyataan yang ini adalah percepatan getaran berbanding lurus dengan sudut fasenya persamaan percepatan yang berhubungan dengan sudut fase adalah A = negatif a. Omega kuadrat Sin 2 PC di mana sih merupakan sudut fase Nah di sini dapat dilihat bahwa si tidak mempengaruhi nilai a agar nasi merupakan bagian dari kuadran Sin yang nilainya akan mempengaruhi Sin maka pernyataan yang adalah salahuraian tersebut dapat disimpulkan bahwa jawaban yang benar adalah pada opsi a sekian untuk soal kali ini sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
dalam getaran harmonik percepatan getaran